1130 - Mayan游戏(Day 1)

Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个7行5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:

1. 每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6到图7);如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1和图2);

2. 任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1到图3)。

注意:

a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1的方块和三个颜色为2的方块会同时被消除,最后剩下一个颜色为2的方块)。

b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5所示的情形,5个方块会同时被消除)。

<img src="http://tk.hustoj.com:80/attached/image/20140118/20140118163312_58575.jpg" alt="" />

3. 方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。

上面图1到图3给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0),将位于(3, 3)的方块向左移动之后,游戏界面从图1变成图2所示的状态,此时在一竖列上有连续三块颜色为4的方块,满足消除条件,消除连续3块颜色为4的方块后,上方的颜色为3的方块掉落,形成图3所示的局面。

<br />

输入

每组输入数据共6行。

第一行为一个正整数n,表示要求游戏通关的步数。

接下来的5行,描述7*5的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1开始顺序编号,相同数字表示相同颜色)。

输入数据保证初始棋盘中没有可以消除的方块。


数据规模:

<span style="line-height:1.5;">对于30%的数据,初始棋盘上的方块都在棋盘的最下面一行;</span>

<span style="line-height:1.5;">对于100%的数据,0&lt;n≤5。</span>

<br />

输出

如果有解决方案,输出n行,每行包含3个整数x,y,g,表示一次移动,每两个整数之间用一个空格隔开,其中(x,y)表示要移动的方块的坐标,g表示移动的方向,1表示向右移动,-1表示向左移动。注意:多组解时,按照x为第一关健字,y为第二关健字,1优先于-1,给出一组字典序最小的解。游戏界面左下角的坐标为(0,0)。

如果没有解决方案,输出一行,包含一个整数-1。


下面是对样例数据的解释:

按箭头方向的顺序分别为图6到图11

<img src="http://tk.hustoj.com:80/attached/image/20140118/20140118163818_73617.jpg" alt="" />

样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:(2,1)处的方格向右移动,(3,1)处的方格向右移动,(3,0)处的方格向右移动,最后可以将棋盘上所有方块消除。

<br />

样例

输入

3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0

输出

2 1 1
3 1 1
3 0 1

来源

NOIP全国联赛提高组-2011年NOIP全国联赛提高组

时间限制 3 秒
内存限制 128 MB
讨论 统计
上一题 下一题